PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000

Path-integral Monte Carlo simulations without the sign problem:
Multilevel blocking approach for effective actions
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The multilevel blocking algorithm recently proposed as a possible solution to the sign problem in path-
integral Monte Carlo simulations has been extended to systems with long-ranged interactions along the Trotter
direction. As an application, results for the real-time quantum dynamics of the spin-boson model are presented.

PACS numbdss): 02.70.Lq, 05.30-d, 05.40--a

[. INTRODUCTION traced-out degrees of freedom, the corresponding path inte-
gral very often exhibits a significantly reduced “intrinsic”
Path-integral Monte Carl@PIMC) simulations are useful sign problem compared to the origin@ime-loca) formula-
for extracting exact results on many-body quantum systemson. The present generalization of the MLB algorithm was
[1]. In principle, PIMC methods can be used to study bothdeveloped to take advantage of this fact. We note that in a
equilibrium and dynamical problems. But in the cases ofPIMC simulation with only nearest-neighbor interactions
fermions and real-time dynamics, the PIMC method suffersaalong the Trotter direction, the original MLB approdd is
from the notorious ‘“sign problem” which renders such more efficient than the method described below, which there-
simulations unstable. This sign problem manifests itself as afore should be used only for time-non-local actions.
exponential decay of the signal-to-noise ratio for large sys- To be specific, we focus on the dynamical sign problem
tems or long real time§2—4]. Its origin is at the heart of arising in real-time PIMC computations here. The modifica-
guantum mechanics itself, namely, the interference of differtions required to implement the method for fermion simula-
ent quantum paths contributing to the path integral might beions are then straightforward. The structure of this paper is
destructive due to exchange effects or due to the oscillatorgs follows. In Sec. Il the general strategy to deal with long-
nature of the real-time evolution operator. Expect for ap-ranged interactions in a MLB scheme is outlined. A detailed
proximate treatment2], the sign problem has remained un- exposition of the computational method can be found in Sec.
solved. Ill. We have studied the real-time dynamics of the celebrated
Very recently, a new strategy was proposed as a possiblgpin-boson syste8] using this approach. Details about this
approach to a complete solution of the sign problem. Thisapplication, performance issues related to the sign problem,
so-called multilevel blockingMLB) algorithm[5,6] is a sys- and numerical results are presented in Sec. IV. Finally, Sec.
tematic implementation of the simple blocking idea—by V offers some conclusions.
sampling “blocks” instead of single paths, one calvays
reduce the sign problefT]. Defining a suitable hierarchy of
blocks by grouping them into different “levels,” crucial in- Il. GENERAL CONSIDERATIONS
formation about the phase cancellations among different ] ) . ) )
quantum paths can then be recursively transferred from the We consider a discretized path integral along a certain
bottom level to the top level. Given sufficient computer contour in the complex-time plane. In a typical real-time
memory, such an approach was shown to be able to eliminagglculation, there is a forward branch froim0 to t=t*,
the sign problem in a stable and exact mani&r But to ~ wheret* is the maximum time studied in the simulation,
date, the MLB algorithm has only been formulated to solvefollowed by a branch going back to the origin, and then by
the sign problem in PIMC simulations with nearest-neighboran imaginary-time branch from=0 tot=—i% 3. We focus
interactions along the Trotter direction. This situation is en-on a “factorized” initial preparation where the relevant de-
countered under a direct Trotter-Suzuki breakup of the shortgrees of freedom, denoted Ift), are held fixed fort<<O
time propagator. [8,9]. That implies that the imaginary-time dynamics must be
In this paper, we report an extension of the MLB ap-frozen at the corresponding value, and we only need to
proach to the case of effective actions that may include arsample on the two real-time branches. Note that such a non-
bitrarily long-ranged interactions. Such effective actions, thatequilibrium calculation cannot proceed in a standard way by
are nonlocal in Trotter time, may arise from degrees of freefirst doing an imaginary-time quantum Monte Carlo simula-
doms having been traced out, e.g., a harmonic heat[B§th tion followed by an analytic continuation of the numerical
or through a Hubbard-Stratonovich transformation, e.g., irdata[1]. The quantum numbergt) at a given time may be
auxiliary-field MC simulations of lattice fermiong3]. Re-  discrete or continuous variables.
markably, because such effective actions capture much of the Using time slices of length*/P, we combine forward
physics, e.g., symmetries or the dissipative influence of thér(t,,)] and backwardr’(t,,)] path configurations at time
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t,=mt*/P into the configuratiors,,, wherem=1,...,P.  among the quantum paths into small subufiiecks such

The configuration at=0 is held fixed, and fot=t* we  that no sign problem occurs whéstochastically summing
must be in a diagonal state(t*)=r'(t*). For an efficient Ve the paths within each subunit. The basic observation

application of the current method, it is essential to combiné'p?gggﬂngozgr nrgtet:cocdurlsir;[haerslj?fgte:ig?yozf’r:gl\lnzbs:ehri S'Tghr;
several neighboring slices into new “blocks.” For in- nontrivial computational task then consists of bringing to-

sfaBnce, tlh(')nk Ofmil’ ; l‘.'és_zs a QeW‘S“(:e; lzb.l’. M gether the interference signals from different blocks, which
T as_anot_ er slice =2, and so on. Lombining g gone by recursively forming blocks on subsequent higher
elementary slices into a block, instead of the originaP levels.

slices we have.=P/q blocks, whereL is the number of Instead of the “circular” structure of the time contour

MLB “levels.” In actual applications, there is considerable jnherent in the trace operation, it is actually more helpful to
freedom in how these blocks are defined, e.g., if there igiew the problem as a linear chain, where the proposed MLB
hardly any intrinsic sign problem, or if there are only few scheme proceeds from left to right. In the case of local ac-
variables inr, one may choose larger valuesgpfAdditional  tions with only nearest-neighbor interactions along Trotter
flexibility can be gained by choosing differeqfor different  time, a different recursion scheme was implemented in Refs.

blocks. [5,6] which is close in spirit to the usual block-spin transfor-
Say we are interested in sampling the configuratinen ~ mations used in renormalization group treatments of spin
the top levell =L according to the appropriate matrix ele- chains. For both MLB implementations, however, the under-

ments of the(reduced density matrix, lying blocking idea is identical, and the nonlocality of the
effective action studied here only requires one to abandon

block-spin-like transformations in favor of the “moving-
p(s)=2"1 2 exp{—9s....5] (2D  along-the-chain” picture.

e -1 Below we assume that one can decompose the effective

where S is the effective action under study a#dis a nor- action according to

malization constant so that L
Sy os]=2 Wls - s (2.4
> p(s)=1. (22 o .
S All dependence on a configuratignis then contained in the

] i ) ) ) ~ “partial actions” W, with A<I. One could, of course, put
Due to the time-non-locality of this action, there will be in- a)| w,_,=0, but the approach becomes more powerful if a
teractions among all blocks. The sum in Eq(2.1) denotes  nontrivial decomposition is possible.

either an integration over continuous degrees of freedom or a

discrete sum. In the case of interest here, the effective action IIl. MULTILEVEL BLOCKING APPROACH
is complex valued, aneé™5/|e” 5| represents an oscillatory
phase factor £ 1 for the fermion sign problemThe “naive
approach” to the sign problem is to sample configuration
using the positive definite weight function

In the following, we describe in detail how the MLB al-
gorithm for effective actions is implemented in practice. The
MC sampling starts on the finest levet 1, where only the
configuration s_;, containing the elementary slicem
=1, ... will be updated with alls~.; remaining fixed at

P~|exp— S}, 23 their initial valuess’. Using the weight function
and to inclqde the oscillz_itory phase in the acc_umulation pro- Pols )= |exp[—W1[sl,sg, o ,SLOJH’
cedure. This leads precisely to the exponentially fast decay i
of the signal-to-noise ratio with* . we generateK sampless{), wherei=1, ... K, and store

The proposed MLB simulation scheme starts by samplinghem for later use. To effectively solve the sign problem and
=1 on the finest level, so only variables in the first block to avoid a bias in the algorithm, the sample nunieshould
corresponding tan=1, . . . g are updated. During this pro- e chosen large enough; see below and in Raf. For K
cedure, interference among different paths will take place=1, the algorithm simply reproduces the naive approach.
Since only relatively few degrees of freedom are sampled, 'he stored samples are now employed to generate infor-

however, the resulting interference information can be quanMation about the sign cancellations. All knowledge about the
tified in a controlled way by employing so-called “leviel- interference that occured at this level is encapsulated in the

bonds” (herel=1). As long asq is chosen sufficiently quantity

small, the interference cannot lead to numerical instabilities, exp{—Wi[s,, ... 8]}

and the sign cancellations occurring while sampling on leveB, = 5 0

I=1 can thus be synthesized and transferred to the level lexp(—Wilsy. %, .. S [ 5 )

=2, where the sampling is carried out next. Here the proce-

dure is repeated, and, by proceeding recursively up to thetop .4 B

level | =L, this strategy can eliminate the sign problem. The =Co z‘ exp~Wilsy, ... 8]}
main bottleneck of the method comes from the immense

memory requirements, since one needs to store and update . K exp{—Wl[éf) S, -5 ]}
the levelt bonds on all levels during the Monte Carlo sam- =K "2, X — W[, 0]}|=|31[52, T
pling (see below for detai)s To summarize, the main idea of 1 S0

our approach is to subdivide the allowed interferences 3.1
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which we call “level-1 bond” in analogy to Refl5], with Bi[S,Ss, - . . Jexpl—Wa[ .85, .. . T}

the normalization constar(tO:ESlPO[sl]. The third line B,= 0 0

follows by noting that theéli) were generated according to [Bilsy.s5, .. . Jexp[—Wol s, 55, .. .} Pyls)]
the weightP,. This equality requires thal is sufficiently

large and thaqg is sufficiently small in order to provide a =CI12 Bi[S,, ...lexp—Wy[s,, ... ]}

good statistical estimate of the level-1 bond.
Combining the second expression in E§.1) with Eq.
(2.1), we rewrite the density matrix in the following way:

=1By[s),S3, .. Jexp{~Wo[s),S3, ... T}

_ =By[s3, ....8], (3.6
p(s)=2"" exp{ 2, w|]coBl ’
with Cleszpl[sz]. Following our above strategy, we then
=zt > PBl eW. (3.2  rewrite the reduced density matrix by combining Eg.2)
R =1 and the second line of E@3.6). This yields

When comparing Eq(3.2) with Eqg. (2.1), we see that the

entire sign problem has now formally been transferred to p(s)=2"1 2 ex% —2 W,]Cocle
levels|>1, since oscillatory phase factors only arise when EARE =2

sampling on these higher levels. Note thaB;

=B4[S,, ...,s ] introduces couplings amongll levels | =z > PPB,] e W (37)
>1, in addition to the ones already contained in the effective S8l =2
actionS.

We now proceed to the next leviet: 2 and, according to Clearly, the sign problem has been transferred one block
Eqg. (3.2, update configurations fan=q+1, ..., using  further to the right along the chain. Note that the normaliza-

the weight tion constantCy,C,, ... depend only on the initial con-
figurations0 so that their precise values need not be known.
PiUs]=|Bis.S, ... Llexpl—Wo[s,L, ... L. This procedure is now iterated in a recursive manner.

(33 Sampling on level using the weight function

Under the moves,—s,, we should then resample and up- Proals]=1Bi-a[s .1, - Jexp[—Wi[s &g, - 1]
date the level-1 bond®,—B; . Exploiting the fact that the (3.9
storedK samples-fl) are correctly distributed for the original

configurationsy, the updated bond can be computed accordrequires the recursive update of all bonflg with N <I.
ing to Starting withB,—B; and puttingBo=1, this recursive up-
date is done according to

L exp W) s, s ) ¢
Bj=K™~ i) O on|" (3.4 / -1
= fexp{-Wils),s, ... 1} Bl=K 1,
=

Again, to obtain an accurate estimate Bff, the numbeiK B, _i[sV,5 1, ... lexpg(—W [} ,5.1,...1}
should be sufficiently large. In the end, sampling under the ) _ N 0 ,
weightP; implies that the probability for accepting the move [Byals Sa - T -WASD S TH
s,—s, under the Metropolis algorithm is (3.9

exp{ Wl[é) '5(3), ! where the primed bonds or partial actions dependyoand

Y 0 the unprimed ones _oqo. Iterating this to get the updated
|exp{ —Wy[s{ Sz' B bondsB,_, for all ", , the test moves—§ is then ac-
exp{—W,[s{),s,,57, .. .]} cepted or rejected according to the probability

lexp{-wils’.s;, ... T}
_|Bials e Jexp - WIS Sy LT

expl —W,[s),s2, .. .]}\ p= - - .
X . (3.5 Bi_as.§%1, - - J&XQ—Wi[§,5%1, - 1}
exp{ —W,[s;,S3, ... -]}\ i ' | ' ‘(3.10)

Using this method, we generaté sampless,’, store  On this level, we again generatesampless”, store them,
them, and compute the level-2 bonds, and compute the levélbonds according to
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K (i) _ i)
o Bl s, Jexp WS s g, LT
BlS:q1,...]=K™?! . . .
(52 -] 21 Bi_a[s” .y, .. Jexp —WilsD &y, T

(3.1)

This process is iterated up to the top level, where the observrhis archetypical model has a number of important applica-
ables of interest may be computed. tions, e.g., the Kondo problem, interstitial tunneling in solids
Since the sampling oB, requires the resampling of all [8], quantum computingl10], and electron transfer reactions
lower-level bonds, the memory and CPU requirements of th¢11], to mention only a few. The bare two-level system
algorithm laid out here are quite large. FpI—1, one  (TLS) has a tunneling matrix element and an asymmetry
needs to updat8,—BJ for all ), with A<I'<I, which  (biag e between the two localized energy leveis, (and o,
imp“es a tremendous amount of Computer memory and Cp@re Pauli matrices Di.SSipation iS. introduced Vi.a a |i.nea.r
time, scaling approximately-K" at the top level. Fortu- heat bath, i.e., an arbitrary collection of harmonic oscillators
nately, an enormous simplification can often be achieved byX.} bilinearly coupled tor,. Concerning the TLS dynam-
exploiting the fact that the interactions among distant slicedcs, all information about the coupling to the bath is con-
are usually weaker than between nearby slices. For instanci@ined in the spectral density(w)=(7/2)2 ,(c2/
when updating level=3, the correlations with the configu- M,®,)d(w—w,), which has a quasicontinuous form in
rationss{) may be very weak, and instead of summing overtypical condensed-phase applicatiod&w) dictates the form
all K sampless{” in the update of the bond®, -, we may Of the (twice-integrateyl bath correlation function g
select only a small subset. When invoking this argument, one” 1KkgT):
should be careful to also check that the additional interac-

tions coming from the level- bonds with\<I| are suffi- *dw J(w) cosh wh B/2]—cosh w(f Bl2—it)]
ciently short ranged. From the definition of these bonds, this Q= o Th 2 sini{ w# B/2]
is to be expected though. 4.2)

Remarkably, this algorithm can significantly relieve the
severity of the sign problem. Let us first give a simple quali-
tative argument supporting this statement for the origina
MLB method of Ref[5], whereP=2", with L denoting the
nymbtlar ofll_evelsa I ontha need@ga}mples for each s(ljlce on ahquency, and the damping strength is measured by the dimen-
given level in order to have satisfactory statistics despite the; ="\ o parameter. In the scaling limitA <y,

;'gnrcf’;gﬁlgr;’éﬂgsztal :r?(;?\kt)'z{l Olgpa;ﬁerlleid}fg |_r|1_;2elsnalv nd assuming<<1, all dependence o@, enters via a renor-
PP P xp lallytom Y - IS malized tunnel splitting 8]

precisely the well-known exponential severity of the sign
problem under the naive approach. However, with the MLB
method the work on the last lev@ivhich is the only one
affected by a sign problem provided was chosen suffi-
ciently largd is only ~K". So in the MLB method, the work

|For the calculations here, we assume an ohmic spectral den-
sity of the formJ(w) =27k awexp(—w/w), for which Q(t)
can be found in closed forrfi7]. Here w. is a cutoff fre-

Agg=[cogma)'(1— Za)]1/2(1_a)(A/wc)a/(1_a)A,
4.3

and powerful analytical8,12] and alternative numerical

P B B . .
needed to sample |,EHPé_ ?na,ﬁhs. with satlsfactory statlst_|cal methodq 13,14 are available for computing the nonequilib-
accuracy grows-K™"=pP"2" j.e., only algebraically with rium dynamics

P. Provided the interactions along the Trotter time decay At this point some remarks are in order. Basically all

sufficiently fast, a similar qualitative argument can be given .o published numerical methods except the real-time

for the generalized MLB algorithm proposed here. For the : o e
application described below, we have indeed found only aI-P”VIC method can deal only with equilibrium quantities; see,

: . X e.g., Refs.[15,16, or explicitly introduce approximations
ebraic dependences of the required CPU times and memo . .
?esources f/)vith the maximum rcclaal ting, instead of expo- H3’14’17’1$ Regarding the latter class, mostly Markovian-

nential ones as encountered in the naive approach. Furthgfp.e approximations concerning the time range of the inter-
actions introduced by the influence functional have been

details of the simulation procedure are provided in Sec. IV . : .
implemented. Our approach is computationally more expen-

sive than other method43-1§, but at the same time it is
IV. APPLICATION: SPIN-BOSON DYNAMICS unigue in yielding numerically exact results for the nonequi-

To demonstrate this MLB algorithm for path-integral I|pr|um spm-bos_on dynamics for arbitrary bath spectr_al den-
sities. It is particularly valuable away from the scaling re-

simulations with long-range interactions in the Trotter direc-".

tion, we study the real-time dynamics of the spin-boso ime vyhe_re Important appllcatlons, €9, co.here'nt
model: (nonequilibrium electron transfer reactions in the adiabatic

regime, are found but basically all other methods fail to yield

exact results. Finally we briefly compare the present ap-

proach to our previously published PIMC methpd. For

not exceedingly smakk, it turns out that the latter method is
(4.1)  justequivalent to th&=1 limit of the present method. From

Table | and the discussion below, it is thus apparent that the

H=—(hA) o+ (hel2) o,

+2

2
Peo
2ma m W,

2
c
1 2 a
+ Emawa< Xo— —202) :
o
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TABLE |. MLB performance fora=1/2, w./A=6, At* =10,
P=40, and severalL. g, denotes the number of slices for

PATH-INTEGRAL MONTE CARLO SIMULATIONS.. ..

=1,...L.

K L a (sgn
1 1 40 0.03
200 2 30-10 0.14
800 2 30-10 0.20
200 3 22-12-6 0.39
600 3 22-12-6 0.45

MLB method is significantly more powerful in allowing for a
study of much longer real times than previously.

We study the quantity?(t) =({o,(t)) under the nonequi-
librium initial preparationo,(t<0)=+1. P(t) gives the
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FIG. 1. Scaling curves folP(t) for a=1/4 with w./A=6

time-dependent difference of the quantum-mechanical occuelosed diamondsand w,/A=1 (open circles The solid curve is
pation probabilities of the left and right states, with the par-the NIBA prediction. The approach of Rdf7] becomes unstable

ticle initially confined to the left state. To obtaiA(t) nu-
merically, we take the discretized
representation of Ref7], and trace out the bath to obtain a
long-ranged effective action; the “influence functional.” In

for Agst>4 in both cases. Statistical errors are of the order of the

path-integral symbol sizes.

reached. Typical CPU time requirements per* 1aC

discretized form the TLS path is represented by spinsamples & 4 h forP=26, L=2, andK=1000, @ 6 h for
O ’Ui, ==+1 on the forward and backward pathsy respeC_P:40, L=3, andK=600, where the simulations were car-

tively. The total actiorS consists of three terms. First, there
is the “free” action S, determined by the bare TLS propa-
gatorUy:

P-1
exrx—so>=[lo Uo( 041,00t IP)Ug(ai, 1,07 ;—t*IP).
(4.4)

The second is the influence functiorg= S{Y+ S(?), which
contains the long-ranged interaction among the spins,

s,“):j;m (o= o)L _m(om— o)+l (om+ o)},
(4.9
whereL;=L{+iLj is given by[7]

Li=[Q((j + Dt*/P)+Q((] —1)t*/P)—2Q(jt*/P)]£j 5

for j>0, andLy=Q(t*/P)/4. In the scaling regime af
=0, this effective action has interactionsa/t? between the
spins(“inverse-square Ising mode). The contribution

SP=i(tIP) Y y(mtIP)(om—0p)  (47)

gives the interaction with the imaginary-time brarjgfhere
o,=+1], where the damping kernel

2 e Jw)
()= ﬁjo dw(Twcos(wt). 4.8

For clarity, we focus on the most difficult case of an unbi-

ased two-state system at zero temperatere] =0. To en-

ried out on SGI Octane workstations. The memory require-
ments for these two cases are 60 and 160 Mbyte, respec-
tively. Data were collected from several®1€amples.

For =0, the bare TLS dynamid3(t) =cos(At) is accu-
rately reproduced. As mentioned above, the performance is
slightly inferior to the original MLB approacf6], which is
now applicable due to the absence of the influence functional
and the associated long-ranged interactions. Turning to the
situation where a bath is present, we first study the cases
=1/2 and w./A=6. The exacta=1/2 result[8], P(t)
=exp(—Agt), valid in the scaling regimev./A>1, was
accurately reproduced, indicating that the scaling regime is
reached already for moderately lar@g/A. Typical param-
eters used in the MLB simulations and the respective average
sign are listed in Table I. The first line in Table | corresponds
to the naive approach. Fer=1/2, it turns out that our pre-
vious PIMC schemég7] yields a comparable performance to
the K=1 version of this MLB method. It is then clear from
Table | that the average sign and hence the signal-to-noise
ratio can be dramatically improved thus allowing for a study
of significantly longer time scaleé$ than before. For a fixed
number of leveld, the average sign grows by increasing the
parametek. Alternatively, for fixedK, the average sign in-
creases with.. Evidently, the latter procedure is more effi-
cient in curing the sign problem, but at the same time com-
putationally more expensive. In practice, it is then necessary
to find a suitable compromise.

Figure 1 shows scaling curves fét(t) at «=1/4 for
w./A=6 andw./A=1. According to thew=1/2 results,
w./A=6 is expected to be within the scaling regime. This is
confirmed by a comparison to the noninteracting blip ap-
proximation(NIBA) [8]. The minor deviations of the NIBA
curve from the exact result are in accordance with Refs.
[7,12] for a<1/2. However, forw./A=1, scaling concepts
(and also the NIBA are expected to fail even qualitatively.

sure that the Trotter error is negligibly small, we have sys-Clearly, the MLB results show that away from the scaling

tematically increased for fixed t* until convergence was

region, quantum coherence is able to persist for much longer,
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and both frequency and decay rate of the oscillations diffetional) arises by integrating out the linear heat bath. For a
significantly from the predictions of the NIBA. In electron heat bath of the ohmic type, @=0 the corresponding in-
transfer reactions in the adiabatic-to-nonadiabatic crossoveeractions among different time slices decay only with a slow
regime, such coherence effects can then strongly influendaverse-square power law.

the low-temperature dynamics. One obvious and important In the present implementation of the MLB method, the
consequence of these coherence effects is the breakdown obasic blocking idea operates on multiple time scales by car-
rate description, implying that theories based on arrying out a subsequent sampling at longer and longer times.
imaginary-time formalism might not be appropriate in this During this procedure, the interference information collected
regime. A detailed analysis of this crossover regime usingt shorter times is taken fully into account without invoking

the MLB method is currently in progress. any approximation. Under such an approach, at the expense
of large memory requirements, the severity of the sign prob-
V. CONCLUSIONS lem can be significantly relieved. The proposed approach

allows one to study time scales not accessible to previous

In this paper, we have extended the multilevel blockingreg|-time path-integral simulations for the spin-boson sys-
(MLB) approach of Refd5,6] to path-integral Monte Carlo g

simulations with long-ranged effective actions along the
Trotter direction. For clarity, we have focused on real-time
simulations here, but believe that a similar approach can also
be helpful in many-fermion computations, e.g., in auxiliary- We wish to thank M. Dikovsky and J. Stockburger for
field fermion simulations of lattice fermions. The practical useful discussions. This research was supported by the
usefulness of the approach was demonstrated by computingolkswagen-Stiftung, the National Science Foundation un-
the nonequilibrium real-time dynamics of the dissipativeder Grant Nos. CHE-9257094 and CHE-9528121, the Sloan
two-state system. Here the effective acti@nfluence func- Foundation, and the Dreyfus Foundation.
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