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Path-integral Monte Carlo simulations without the sign problem:
Multilevel blocking approach for effective actions
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The multilevel blocking algorithm recently proposed as a possible solution to the sign problem in path-
integral Monte Carlo simulations has been extended to systems with long-ranged interactions along the Trotter
direction. As an application, results for the real-time quantum dynamics of the spin-boson model are presented.

PACS number~s!: 02.70.Lq, 05.30.2d, 05.40.2a
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I. INTRODUCTION

Path-integral Monte Carlo~PIMC! simulations are usefu
for extracting exact results on many-body quantum syste
@1#. In principle, PIMC methods can be used to study b
equilibrium and dynamical problems. But in the cases
fermions and real-time dynamics, the PIMC method suff
from the notorious ‘‘sign problem’’ which renders suc
simulations unstable. This sign problem manifests itself as
exponential decay of the signal-to-noise ratio for large s
tems or long real times@2–4#. Its origin is at the heart of
quantum mechanics itself, namely, the interference of dif
ent quantum paths contributing to the path integral might
destructive due to exchange effects or due to the oscilla
nature of the real-time evolution operator. Expect for a
proximate treatments@2#, the sign problem has remained u
solved.

Very recently, a new strategy was proposed as a poss
approach to a complete solution of the sign problem. T
so-called multilevel blocking~MLB ! algorithm@5,6# is a sys-
tematic implementation of the simple blocking idea—
sampling ‘‘blocks’’ instead of single paths, one canalways
reduce the sign problem@7#. Defining a suitable hierarchy o
blocks by grouping them into different ‘‘levels,’’ crucial in
formation about the phase cancellations among differ
quantum paths can then be recursively transferred from
bottom level to the top level. Given sufficient comput
memory, such an approach was shown to be able to elimi
the sign problem in a stable and exact manner@5#. But to
date, the MLB algorithm has only been formulated to so
the sign problem in PIMC simulations with nearest-neighb
interactions along the Trotter direction. This situation is e
countered under a direct Trotter-Suzuki breakup of the sh
time propagator.

In this paper, we report an extension of the MLB a
proach to the case of effective actions that may include
bitrarily long-ranged interactions. Such effective actions, t
are nonlocal in Trotter time, may arise from degrees of fr
doms having been traced out, e.g., a harmonic heat bath@8#,
or through a Hubbard-Stratonovich transformation, e.g.
auxiliary-field MC simulations of lattice fermions@3#. Re-
markably, because such effective actions capture much o
physics, e.g., symmetries or the dissipative influence of
PRE 611063-651X/2000/61~5!/5961~6!/$15.00
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traced-out degrees of freedom, the corresponding path i
gral very often exhibits a significantly reduced ‘‘intrinsic
sign problem compared to the original~time-local! formula-
tion. The present generalization of the MLB algorithm w
developed to take advantage of this fact. We note that
PIMC simulation with only nearest-neighbor interactio
along the Trotter direction, the original MLB approach@5# is
more efficient than the method described below, which the
fore should be used only for time-non-local actions.

To be specific, we focus on the dynamical sign proble
arising in real-time PIMC computations here. The modific
tions required to implement the method for fermion simu
tions are then straightforward. The structure of this pape
as follows. In Sec. II the general strategy to deal with lon
ranged interactions in a MLB scheme is outlined. A detai
exposition of the computational method can be found in S
III. We have studied the real-time dynamics of the celebra
spin-boson system@8# using this approach. Details about th
application, performance issues related to the sign probl
and numerical results are presented in Sec. IV. Finally, S
V offers some conclusions.

II. GENERAL CONSIDERATIONS

We consider a discretized path integral along a cert
contour in the complex-time plane. In a typical real-tim
calculation, there is a forward branch fromt50 to t5t* ,
where t* is the maximum time studied in the simulatio
followed by a branch going back to the origin, and then
an imaginary-time branch fromt50 to t52 i\b. We focus
on a ‘‘factorized’’ initial preparation where the relevant d
grees of freedom, denoted byr(t), are held fixed fort,0
@8,9#. That implies that the imaginary-time dynamics must
frozen at the corresponding value, and we only need
sample on the two real-time branches. Note that such a n
equilibrium calculation cannot proceed in a standard way
first doing an imaginary-time quantum Monte Carlo simu
tion followed by an analytic continuation of the numeric
data@1#. The quantum numbersr(t) at a given time may be
discrete or continuous variables.

Using time slices of lengtht* /P, we combine forward
@r(tm)# and backward@r8(tm)# path configurations at time
5961 ©2000 The American Physical Society
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tm5mt* /P into the configurationsm , wherem51, . . . ,P.
The configuration att50 is held fixed, and fort5t* we
must be in a diagonal state,r(t* )5r8(t* ). For an efficient
application of the current method, it is essential to comb
several neighboring slicesm into new ‘‘blocks.’’ For in-
stance, think ofm51, . . . ,5 as a new‘‘slice’’ l 51, m
56, . . . ,10 asanother slicel 52, and so on. Combiningq
elementary slices into a blocksl , instead of the originalP
slices we haveL5P/q blocks, whereL is the number of
MLB ‘‘levels.’’ In actual applications, there is considerab
freedom in how these blocks are defined, e.g., if there
hardly any intrinsic sign problem, or if there are only fe
variables inr, one may choose larger values ofq. Additional
flexibility can be gained by choosing differentq for different
blocks.

Say we are interested in sampling the configurationssL on
the top levell 5L according to the appropriate matrix el
ments of the~reduced! density matrix,

r~sL!5Z21 (
s1 , . . . ,sL21

exp$2S@s1 , . . . ,sL#%, ~2.1!

whereS is the effective action under study andZ is a nor-
malization constant so that

(
sL

r~sL!51. ~2.2!

Due to the time-non-locality of this action, there will be in
teractions among all blockssl . The sum in Eq.~2.1! denotes
either an integration over continuous degrees of freedom
discrete sum. In the case of interest here, the effective ac
is complex valued, ande2S/ue2Su represents an oscillator
phase factor (61 for the fermion sign problem!. The ‘‘naive
approach’’ to the sign problem is to sample configuratio
using the positive definite weight function

P;uexp$2S%u, ~2.3!

and to include the oscillatory phase in the accumulation p
cedure. This leads precisely to the exponentially fast de
of the signal-to-noise ratio witht* .

The proposed MLB simulation scheme starts by samp
l 51 on the finest level, so only variables in the first blo
corresponding tom51, . . . ,q are updated. During this pro
cedure, interference among different paths will take pla
Since only relatively few degrees of freedom are samp
however, the resulting interference information can be qu
tified in a controlled way by employing so-called ‘‘level-l
bonds’’ ~here l 51). As long asq is chosen sufficiently
small, the interference cannot lead to numerical instabilit
and the sign cancellations occurring while sampling on le
l 51 can thus be synthesized and transferred to the levl
52, where the sampling is carried out next. Here the pro
dure is repeated, and, by proceeding recursively up to the
level l 5L, this strategy can eliminate the sign problem. T
main bottleneck of the method comes from the imme
memory requirements, since one needs to store and up
the level-l bonds on all levels during the Monte Carlo sam
pling ~see below for details!. To summarize, the main idea o
our approach is to subdivide the allowed interferen
e
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among the quantum paths into small subunits~blocks! such
that no sign problem occurs when~stochastically! summing
over the paths within each subunit. The basic observa
underlying our method is therefore almost trivial: The si
problem does not occur in a sufficiently small system. T
nontrivial computational task then consists of bringing
gether the interference signals from different blocks, wh
is done by recursively forming blocks on subsequent hig
levels.

Instead of the ‘‘circular’’ structure of the time contou
inherent in the trace operation, it is actually more helpful
view the problem as a linear chain, where the proposed M
scheme proceeds from left to right. In the case of local
tions with only nearest-neighbor interactions along Trot
time, a different recursion scheme was implemented in R
@5,6# which is close in spirit to the usual block-spin transfo
mations used in renormalization group treatments of s
chains. For both MLB implementations, however, the und
lying blocking idea is identical, and the nonlocality of th
effective action studied here only requires one to aban
block-spin-like transformations in favor of the ‘‘moving
along-the-chain’’ picture.

Below we assume that one can decompose the effec
action according to

S@s1 , . . . ,sL#5(
l 51

L

Wl@sl , . . . ,sL#. ~2.4!

All dependence on a configurationsl is then contained in the
‘‘partial actions’’ Wl with l< l . One could, of course, pu
all Wl .150, but the approach becomes more powerful i
nontrivial decomposition is possible.

III. MULTILEVEL BLOCKING APPROACH

In the following, we describe in detail how the MLB a
gorithm for effective actions is implemented in practice. T
MC sampling starts on the finest levell 51, where only the
configuration sl 51 containing the elementary slicesm
51, . . . ,q will be updated with allsl .1 remaining fixed at
their initial valuessl

0 . Using the weight function

P0@s1#5uexp$2W1@s1 ,s2
0 , . . . ,sL

0#%u,

we generateK sampless1
( i ) , where i 51, . . . ,K, and store

them for later use. To effectively solve the sign problem a
to avoid a bias in the algorithm, the sample numberK should
be chosen large enough; see below and in Ref.@5#. For K
51, the algorithm simply reproduces the naive approach

The stored samples are now employed to generate in
mation about the sign cancellations. All knowledge about
interference that occured at this level is encapsulated in
quantity

B15K exp$2W1@s1 , . . . ,sL#%

uexp$2W1@s1 ,s2
0 , . . . ,sL

0#%u L P0[s1]

5C0
21(

s1

exp$2W1@s1 , . . . ,sL#%

5K21(
i 51

K exp$2W1@s1
( i ) ,s2 , . . . ,sL#%

uexp$2W1@s1
( i ) ,s2

0 , . . . ,sL
0#%u

5B1@s2 , . . . ,sL#,

~3.1!
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which we call ‘‘level-1 bond’’ in analogy to Ref.@5#, with
the normalization constantC05(s1

P0@s1#. The third line

follows by noting that thes1
( i ) were generated according t

the weightP0. This equality requires thatK is sufficiently
large and thatq is sufficiently small in order to provide a
good statistical estimate of the level-1 bond.

Combining the second expression in Eq.~3.1! with Eq.
~2.1!, we rewrite the density matrix in the following way:

r~sL!5Z21 (
s2 , . . . ,sL21

expH 2(
l .1

Wl J C0B1

5Z21 (
s1 , . . . ,sL21

P0B1)
l .1

e2Wl. ~3.2!

When comparing Eq.~3.2! with Eq. ~2.1!, we see that the
entire sign problem has now formally been transferred
levels l .1, since oscillatory phase factors only arise wh
sampling on these higher levels. Note thatB1
5B1@s2 , . . . ,sL# introduces couplings amongall levels l
.1, in addition to the ones already contained in the effect
actionS.

We now proceed to the next levell 52 and, according to
Eq. ~3.2!, update configurations form5q11, . . . ,2q using
the weight

P1@s2#5uB1@s2 ,s3
0 , . . . ,sL

0#exp$2W2@s2 ,s3
0 , . . . ,sL

0#%u.
~3.3!

Under the moves2→s28 , we should then resample and u
date the level-1 bonds,B1→B18 . Exploiting the fact that the
storedK sampless1

( i ) are correctly distributed for the origina
configurations2

0, the updated bond can be computed acco
ing to

B185K21(
i 51

K exp$2W1@s1
( i ) ,s28 , . . . ,sL#%

uexp$2W1@s1
( i ) ,s2

0 , . . . ,sL
0#%u

. ~3.4!

Again, to obtain an accurate estimate forB18 , the numberK
should be sufficiently large. In the end, sampling under
weightP1 implies that the probability for accepting the mov
s2→s28 under the Metropolis algorithm is

p5U(i

exp$2W1@s1
( i ) ,s28 ,s3

0 , . . . #%

uexp$2W1@s1
( i ) ,s2

0 , . . . #%u

(
i

exp$2W1@s1
( i ) ,s2 ,s3

0 , . . . #%

uexp$2W1@s1
( i ) ,s2

0 , . . . #%u

U
3Uexp$2W2@s28 ,s3

0 , . . . #%

exp$2W2@s2 ,s3
0 , . . . #%

U . ~3.5!

Using this method, we generateK sampless2
( i ) , store

them, and compute the level-2 bonds,
o
n

e

-

e

B25K B1@s2 ,s3 , . . . #exp$2W2@s2 ,s3 , . . . #%

uB1@s2 ,s3
0 , . . . #exp$2W2@s2 ,s3

0 , . . . #%u L P1[s2]

5C1
21(

s2

B1@s2 , . . . #exp$2W2@s2 , . . . #%

5K21(
i 51

K B1@s2
( i ) ,s3 , . . . #exp$2W2@s2

( i ) ,s3 , . . . #%

uB1@s2
( i ) ,s3

0 , . . . #exp$2W2@s2
( i ) ,s3

0 , . . . #%u

5B2@s3 , . . . ,sL#, ~3.6!

with C15(s2
P1@s2#. Following our above strategy, we the

rewrite the reduced density matrix by combining Eq.~3.2!
and the second line of Eq.~3.6!. This yields

r~sL!5Z21 (
s3 , . . . ,sL21

expH 2(
l .2

Wl J C0C1B2

5Z21 (
s1 , . . . ,sL21

P0P1B2)
l .2

e2Wl. ~37!

Clearly, the sign problem has been transferred one bl
further to the right along the chain. Note that the normaliz
tion constantsC0 ,C1 , . . . depend only on the initial con
figurationsl

0 so that their precise values need not be know
This procedure is now iterated in a recursive mann

Sampling on levell using the weight function

Pl 21@sl #5uBl 21@sl ,sl 11
0 , . . . #exp$2Wl@sl ,sl 11

0 , . . . #%u
~3.8!

requires the recursive update of all bondsBl with l, l .
Starting withB1→B18 and puttingB051, this recursive up-
date is done according to

Bl85K21(
i 51

K

3
Bl218 @sl

( i ) ,sl11 , . . . #exp$2Wl8@sl
( i ) ,sl11 , . . . #%

uBl21@sl
( i ) ,sl11

0 , . . . #exp$2Wl@sl
( i ) ,sl11

0 , . . . #%u
,

~3.9!

where the primed bonds or partial actions depend onsl8 and
the unprimed ones onsl

0 . Iterating this to get the update
bondsBl 22 for all sl 21

( i ) , the test movesl→sl8 is then ac-
cepted or rejected according to the probability

p5UBl 21@sl8 ,sl 11
0 , . . . #exp$2Wl@sl8 ,sl 11

0 , . . . #%

Bl 21@sl ,sl 11
0 , . . . #exp$2Wl@sl ,sl 11

0 , . . . #%
U .
~3.10!

On this level, we again generateK samplessl
( i ) , store them,

and compute the level-l bonds according to
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Bl@sl 11 , . . . #5K21(
i 51

K Bl 21@sl
( i ) ,sl 11 , . . . #exp$2Wl@sl

( i ) ,sl 11 , . . . #%

uBl 21@sl
( i ) ,sl 11

0 , . . . #exp$2Wl@sl
( i ) ,sl 11

0 , . . . #%u
. ~3.11!
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This process is iterated up to the top level, where the obs
ables of interest may be computed.

Since the sampling ofBl requires the resampling of a
lower-level bonds, the memory and CPU requirements of
algorithm laid out here are quite large. Forl, l 21, one
needs to updateBl→Bl8 for all sl 8

( i ) , with l, l 8, l , which
implies a tremendous amount of computer memory and C
time, scaling approximately;KL at the top level. Fortu-
nately, an enormous simplification can often be achieved
exploiting the fact that the interactions among distant sli
are usually weaker than between nearby slices. For insta
when updating levell 53, the correlations with the configu
rationss1

( i ) may be very weak, and instead of summing ov
all K sampless1

( i ) in the update of the bondsBl, l , we may
select only a small subset. When invoking this argument,
should be careful to also check that the additional inter
tions coming from the level-l bonds withl, l are suffi-
ciently short ranged. From the definition of these bonds,
is to be expected though.

Remarkably, this algorithm can significantly relieve t
severity of the sign problem. Let us first give a simple qua
tative argument supporting this statement for the origi
MLB method of Ref.@5#, whereP52L, with L denoting the
number of levels. If one needsK samples for each slice on
given level in order to have satisfactory statistics despite
sign problem, the total number of paths needed in the na
approach depends exponentially onP, namely,;KP. This is
precisely the well-known exponential severity of the si
problem under the naive approach. However, with the M
method the work on the last level@which is the only one
affected by a sign problem providedK was chosen suffi-
ciently large# is only ;KL. So in the MLB method, the work
needed to sample theKP paths with satisfactory statistica
accuracy grows;K ln2P5Pln2K, i.e., only algebraically with
P. Provided the interactions along the Trotter time dec
sufficiently fast, a similar qualitative argument can be giv
for the generalized MLB algorithm proposed here. For
application described below, we have indeed found only
gebraic dependences of the required CPU times and mem
resources with the maximum real timet* , instead of expo-
nential ones as encountered in the naive approach. Fu
details of the simulation procedure are provided in Sec.

IV. APPLICATION: SPIN-BOSON DYNAMICS

To demonstrate this MLB algorithm for path-integr
simulations with long-range interactions in the Trotter dire
tion, we study the real-time dynamics of the spin-bos
model;

H52~\D/2!sx1~\e/2!sz

1(
a

F pa
2

2ma
1 1

2 mava
2S xa2

ca

mava
2

szD 2G . ~4.1!
v-

e
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y
s
ce,

r

e
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-
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e
e

y
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l-
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-
n

This archetypical model has a number of important appli
tions, e.g., the Kondo problem, interstitial tunneling in soli
@8#, quantum computing@10#, and electron transfer reaction
@11#, to mention only a few. The bare two-level syste
~TLS! has a tunneling matrix elementD and an asymmetry
~bias! e between the two localized energy levels (sx andsz
are Pauli matrices!. Dissipation is introduced via a linea
heat bath, i.e., an arbitrary collection of harmonic oscillat
$xa% bilinearly coupled tosz . Concerning the TLS dynam
ics, all information about the coupling to the bath is co
tained in the spectral densityJ(v)5(p/2)(a(ca

2/
mava)d(v2va), which has a quasicontinuous form i
typical condensed-phase applications.J(v) dictates the form
of the ~twice-integrated! bath correlation function (b
51/kBT):

Q~ t !5E
0

`dv

p\

J~v!

v2

cosh@v\b/2#2cosh@v~\b/22 i t !#

sinh@v\b/2#
.

~4.2!

For the calculations here, we assume an ohmic spectral
sity of the formJ(v)52p\avexp(2v/vc), for which Q(t)
can be found in closed form@7#. Here vc is a cutoff fre-
quency, and the damping strength is measured by the dim
sionless Kondo parametera. In the scaling limitD!vc ,
and assuminga,1, all dependence onvc enters via a renor-
malized tunnel splitting@8#

Deff5@cos~pa!G~122a!#1/2(12a)~D/vc!
a/(12a)D,

~4.3!

and powerful analytical@8,12# and alternative numerica
methods@13,14# are available for computing the nonequilib
rium dynamics.

At this point some remarks are in order. Basically
other published numerical methods except the real-t
PIMC method can deal only with equilibrium quantities; se
e.g., Refs.@15,16#, or explicitly introduce approximations
@13,14,17,18#. Regarding the latter class, mostly Markovia
type approximations concerning the time range of the in
actions introduced by the influence functional have be
implemented. Our approach is computationally more exp
sive than other methods@13–18#, but at the same time it is
unique in yielding numerically exact results for the noneq
librium spin-boson dynamics for arbitrary bath spectral de
sities. It is particularly valuable away from the scaling r
gime where important applications, e.g., cohere
~nonequilibrium! electron transfer reactions in the adiaba
regime, are found but basically all other methods fail to yie
exact results. Finally we briefly compare the present
proach to our previously published PIMC method@7#. For
not exceedingly smalla, it turns out that the latter method i
just equivalent to theK51 limit of the present method. From
Table I and the discussion below, it is thus apparent that



a

c
ar

a
a
n
in
ec
re
-

bi

ys

r-
ire-
pec-

e is

nal
the
s

is

age
ds

to

oise
dy

he

-
m-
ary

is
p-

fs.

.
ng
ger,

the

PRE 61 5965PATH-INTEGRAL MONTE CARLO SIMULATIONS . . .
MLB method is significantly more powerful in allowing for
study of much longer real times than previously.

We study the quantityP(t)5^sz(t)& under the nonequi-
librium initial preparationsz(t,0)511. P(t) gives the
time-dependent difference of the quantum-mechanical oc
pation probabilities of the left and right states, with the p
ticle initially confined to the left state. To obtainP(t) nu-
merically, we take the discretized path-integr
representation of Ref.@7#, and trace out the bath to obtain
long-ranged effective action; the ‘‘influence functional.’’ I
discretized form the TLS path is represented by sp
s i ,s i8561 on the forward and backward paths, resp
tively. The total actionS consists of three terms. First, the
is the ‘‘free’’ action S0 determined by the bare TLS propa
gatorU0:

exp~2S0!5 )
i 50

P21

U0~s i 11 ,s i ;t* /P!U0~s i 118 ,s i8 ;2t* /P!.

~4.4!

The second is the influence functionalSI5SI
(1)1SI

(2) , which
contains the long-ranged interaction among the spins,

SI
(1)5 (

j >m
~s j2s j8!$L j 2m8 ~sm2sm8 !1 iL j 2m9 ~sm1sm8 !%,

~4.5!

whereL j5L j81 iL j9 is given by@7#

L j5@Q„~ j 11!t* /P…1Q„~ j 21!t* /P…22Q~ j t * /P!#/4
~4.6!

for j .0, andL05Q(t* /P)/4. In the scaling regime atT
50, this effective action has interactions;a/t2 between the
spins~‘‘inverse-square Ising model’’!. The contribution

SI
(2)5 i ~ t* /P!(

m
g~mt* /P!~sm2sm8 ! ~4.7!

gives the interaction with the imaginary-time branch@where
sz511#, where the damping kernel

g~ t !5
2

p\E0

`

dv
J~v!

v
cos~vt !. ~4.8!

For clarity, we focus on the most difficult case of an un
ased two-state system at zero temperature,e5T50. To en-
sure that the Trotter error is negligibly small, we have s
tematically increasedP for fixed t* until convergence was

TABLE I. MLB performance fora51/2, vc /D56, Dt* 510,
P540, and severalL. ql denotes the number of slices forl
51, . . . ,L.

K L ql ^sgn&

1 1 40 0.03
200 2 30–10 0.14
800 2 30–10 0.20
200 3 22–12–6 0.39
600 3 22–12–6 0.45
u-
-

l

s
-

-

-

reached. Typical CPU time requirements per 104 MC
samples are 4 h for P526, L52, andK51000, or 6 h for
P540, L53, andK5600, where the simulations were ca
ried out on SGI Octane workstations. The memory requ
ments for these two cases are 60 and 160 Mbyte, res
tively. Data were collected from several 105 samples.

For a50, the bare TLS dynamicsP(t)5cos(Dt) is accu-
rately reproduced. As mentioned above, the performanc
slightly inferior to the original MLB approach@6#, which is
now applicable due to the absence of the influence functio
and the associated long-ranged interactions. Turning to
situation where a bath is present, we first study the casea
51/2 and vc /D56. The exacta51/2 result @8#, P(t)
5exp(2Defft), valid in the scaling regimevc /D@1, was
accurately reproduced, indicating that the scaling regime
reached already for moderately largevc /D. Typical param-
eters used in the MLB simulations and the respective aver
sign are listed in Table I. The first line in Table I correspon
to the naive approach. Fora51/2, it turns out that our pre-
vious PIMC scheme@7# yields a comparable performance
the K51 version of this MLB method. It is then clear from
Table I that the average sign and hence the signal-to-n
ratio can be dramatically improved thus allowing for a stu
of significantly longer time scalest* than before. For a fixed
number of levelsL, the average sign grows by increasing t
parameterK. Alternatively, for fixedK, the average sign in-
creases withL. Evidently, the latter procedure is more effi
cient in curing the sign problem, but at the same time co
putationally more expensive. In practice, it is then necess
to find a suitable compromise.

Figure 1 shows scaling curves forP(t) at a51/4 for
vc /D56 and vc /D51. According to thea51/2 results,
vc /D56 is expected to be within the scaling regime. This
confirmed by a comparison to the noninteracting blip a
proximation~NIBA ! @8#. The minor deviations of the NIBA
curve from the exact result are in accordance with Re
@7,12# for a<1/2. However, forvc /D51, scaling concepts
~and also the NIBA! are expected to fail even qualitatively
Clearly, the MLB results show that away from the scali
region, quantum coherence is able to persist for much lon

FIG. 1. Scaling curves forP(t) for a51/4 with vc /D56
~closed diamonds! andvc /D51 ~open circles!. The solid curve is
the NIBA prediction. The approach of Ref.@7# becomes unstable
for Defft.4 in both cases. Statistical errors are of the order of
symbol sizes.



ffe
n
ov
n

ta
o

a
is
in

ng

he
e

al
y-
a
ti

ve

r a

ow

he
ar-
es.

ted
g
nse

ob-
ach
ous
ys-

or
the
n-

oan

5966 PRE 61R. EGGER, L. MÜHLBACHER, AND C. H. MAK
and both frequency and decay rate of the oscillations di
significantly from the predictions of the NIBA. In electro
transfer reactions in the adiabatic-to-nonadiabatic cross
regime, such coherence effects can then strongly influe
the low-temperature dynamics. One obvious and impor
consequence of these coherence effects is the breakdown
rate description, implying that theories based on
imaginary-time formalism might not be appropriate in th
regime. A detailed analysis of this crossover regime us
the MLB method is currently in progress.

V. CONCLUSIONS

In this paper, we have extended the multilevel blocki
~MLB ! approach of Refs.@5,6# to path-integral Monte Carlo
simulations with long-ranged effective actions along t
Trotter direction. For clarity, we have focused on real-tim
simulations here, but believe that a similar approach can
be helpful in many-fermion computations, e.g., in auxiliar
field fermion simulations of lattice fermions. The practic
usefulness of the approach was demonstrated by compu
the nonequilibrium real-time dynamics of the dissipati
two-state system. Here the effective action~influence func-
at
,

.J

ev

A.
r

er
ce
nt
f a

n

g

so

l
ng

tional! arises by integrating out the linear heat bath. Fo
heat bath of the ohmic type, atT50 the corresponding in-
teractions among different time slices decay only with a sl
inverse-square power law.

In the present implementation of the MLB method, t
basic blocking idea operates on multiple time scales by c
rying out a subsequent sampling at longer and longer tim
During this procedure, the interference information collec
at shorter times is taken fully into account without invokin
any approximation. Under such an approach, at the expe
of large memory requirements, the severity of the sign pr
lem can be significantly relieved. The proposed appro
allows one to study time scales not accessible to previ
real-time path-integral simulations for the spin-boson s
tem.
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